

Home Search Collections Journals About Contact us My IOPscience

The value of the single-particle potential in the approximate relativistic theory of the nucleus

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1974 J. Phys. A: Math. Nucl. Gen. 7 2093 (http://iopscience.iop.org/0301-0015/7/16/413) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.87 The article was downloaded on 02/06/2010 at 04:54

Please note that terms and conditions apply.

ADDENDUM

The value of the single-particle potential in the approximate relativistic theory of the nucleus

V A Krutov, V N Fomenko and L N Savushkin

Research Physical Institute, Leningrad State University, Leningrad 199164, USSR

Received 10 June 1974

Abstract. In this addendum the recalculated values of the spin-orbit potential, the average field and the isobaric-spin potential are presented starting from an approximate relativistic equation for a many-nucleon system.

In the paper by Krutov *et al* (1974) the single-particle nuclear potential (ie, the average field, isobaric-spin potential and spin-orbit potential) has been obtained starting from the approximate relativistic equation for a bound many-nucleon system. The two-particle interactions employed in this paper were taken in the form of one-boson exchange potentials which well reproduce nucleon-nucleon scattering data. When calculating the value of the nuclear single-particle potential, we utilized some variants of two-particle forces considered in the papers by Green and Sawada (1967), Ueda and Green (1968), Stagat *et al* (1971). Unfortunately, some of these papers contain misprints and omissions[†]. In particular, in table 1 of the paper by Ueda and Green (1968) a factor $[\Lambda^2/(\Lambda^2 - \mu^2)]^2$ was omitted erroneously. This factor, however, plays an essential role

	а	b	c	d	Experimental data
$\Delta E_{1f}^{\rm SO}(^{41}{\rm Ca})$	13.8	7.65	9.45	10.1	6.50
	(9.32)	(4.25)	(5-56)	(5.98)	
$\Delta E_{2p}^{\rm SO}(^{41}{\rm Ca})$	3.30	1.82	2 25	2.37	2.00
	(2.22)	(1.01)	(1.32)	(1.41)	
$\Delta E_{2g}^{\rm SO}(^{209}{\rm Pb})$	3.53	2.62	2.88	2.94	2.47
	(2.22)	(1.16)	(1.43)	(1.52)	
$\Delta E_{1i}^{\rm SO}(^{209}\rm Pb)$	11.2	8.33	9.22	9.37	4.57
	(7.08)	(3.70)	(4.59)	(4.82)	
$\Delta E_{\rm 3d}^{\rm SO}(^{\rm 209}{\rm Pb})$	2.03	1.49	1.66	1.69	0.98
	(1.28)	(0.667)	(0.830)	(0.874)	

Table 1. Spin-orbit splittings obtained in the framework of the Hartree-Fock approximation for the following variants of two-body forces: a, Green and Sawada (1967); b, Ueda and Green (1968) (model II); c, Ueda and Green (1968) (model III); d, Stagat *et al* (1971). The spin-orbit splittings in the Hartree approximation are given in parentheses[†].

† All quantities are given in MeV. The relative thickness of the surface layer τ is assumed to be 0.4.

† This was also indicated in a recent paper by Calogero and Levi (1973).

in computing the values of the single-particle potential. This forced us to recalculate the values given in tables 1 and 2 of our paper (Krutov *et al* 1974).

In this addendum we give the recalculated values in tables 1 and 2 completely conserving the notation used in our previous paper (Krutov *et al* 1974). The results for the variant (a) of the two-particle forces remain unaltered (the factor $[\Lambda^2/(\Lambda^2 - \mu^2)]^2$ being absent in this variant), the other results do change. The recalculated values generally proved to be better than those given in Krutov *et al* (1974). In particular, the recalculated values remove practically all doubts about the relativistic character of the nuclear single-particle spin-orbit potential. In addition, the recalculated values enable us to choose more definitely a nucleon-nucleon interaction from nuclear structure conditions imposed in addition to nucleon-nucleon scattering data. Actually, it is obvious from table 2 that the variant (b) of two-particle forces must be considered as inadequate. At the same time, variant (d) describes the single-particle potential well enough.

Table 2. The values of the neutron average field and isobaric-spin potential obtained in the framework of the Hartree-Fock approximation for the same variants of two-body forces as in table 1. To make comparison with the results obtained in the Hartree approximation (Krutov and Savushkin 1973) (figures in parentheses) more convenient we included $V_{\rm IS}$ into $V_{\rm av}$ in this table[†].

	а	b	c	d	Experimental data
$\overline{\tilde{V}_{av}}^{(41)}Ca)$	- 34.0	+ 6.79	- 56.9	70.9	
$\tilde{V}_{av}(^{209}\text{Pb})$	(-45.3) -31.7	(-40·8) -4·53	(-87·1) -56·3	(-103) -68.3	
$V^{\rm eff}(^{41}{\rm Ca})$	(-45.3) -27.1	(-51.2) + 5.41	(-89·4) -45·4	(-105) -56-5	- 46.1
Veff(209Ph)	(-36.1) -25.3	(-32.6) -3.61	(-69.4) - 44.9	(-82.1)	- 53.4
.eff(209Dh)	(-36.1)	(-40.8)	(-71.3)	(-83·7)	- 70 4
UIS (PO)	(0)	(-156)	+9.19 (33.8)	+38.4 (-30.7)	+ /9.4

† All quantities are in MeV. The relative thickness of surface layer τ is assumed to be 0.4. The experimental values of V_{av}^{eff} are taken from the proton scattering data (Greenlees and Pyle 1966), for neutrons the experimental values of $|V_{av}^{eff}|$ for ²⁰⁸Pb must be somewhat smaller than 53.4.

References

Calogero F and Levi D 1973 Phys. Rev. C 8 83-92 Green A E S and Sawada T 1967 Rev. Mod. Phys. 39 594-610 Greenlees G W and Pyle G J 1966 Phys. Rev. 149 836-43 Krutov V A and Savushkin L N 1973 J. Phys. A: Math., Nucl. Gen. 6 93-105 Krutov V A, Fomenko V N and Savushkin L N 1974 J. Phys. A. Math., Nucl. Gen. 7 372 81 Stagat R W, Riewe F and Green A E S 1971 Phys. Rev. C 3 552-62 Ueda T and Green A E S 1968 Phys. Rev. 174 1304-12